
Introduction to Software Verification

Vincent Penelle
<vpenelle@u-bordeaux.fr>

LaBRI, Université de Bordeaux

September 23, 2019

— Bounded Model Checking —

1 / 12



Model-checking

Program

Transition
System T

Is ϕ true in all
reachable configu-

-rations of T?

in at most k steps?

Formula ϕ

Specification

Yes

No

Z3

(up to k)

UnknownTimeout

T is a priori infinite! So it is not possible to give to a SMT solver like that!

2 / 12



Bounded Model-checking

Program

Transition
System T

Is ϕ true in all
reachable configu-

-rations of T
in at most k steps?

Formula ϕ

Specification

Yes

No

Z3

(up to k)

UnknownTimeout

The unfolding of T up to k step is finite! Therefore Z3 can test if T holds up to k.
Of course, we can increase k if the answer is yes and we have a doubt.

2 / 12



Unfolding a transition system

A (simple) system.

p q

x ≥ y

x ≤ y

x = x + y y = x + y

Its unfolding up to 4.

p1

p2 q2

p3 q3 p3 q3

p4 q4 p4 q4 p4 q4 p4 q4

x = x + y x ≥ y

x = x + y x ≥ y x ≤ y y = x + y

... ... ... ... ... ... ... ...

3 / 12



Depth-first search

Given a formula ϕ, we want to know if it is valid (it is the specification) up to depth
k in all executions. We perform a depth-first search.

p1

p2 q2

p3 q3 p3 q3

p4 q4 p4 q4 p4 q4 p4 q4

x = x + y x ≥ y

x = x + y x ≥ y x ≤ y y = x + y

... ... ... ... ... ... ... ...

¬ϕ UNSAT

¬ϕ UNSAT

¬ϕ UNSAT

¬ϕ UNSAT¬ϕ UNSAT

¬ϕ UNSAT

¬ϕ SAT

We know ϕ can be falsified with the execution p1, p2, q3, p4. It is the trace of error
and we output it!

4 / 12



Depth-first search

Given a formula ϕ, we want to know if it is valid (it is the specification) up to depth
k in all executions. We perform a depth-first search.

p1

p2 q2

p3 q3 p3 q3

p4 q4 p4 q4 p4 q4 p4 q4

x = x + y x ≥ y

x = x + y x ≥ y x ≤ y y = x + y

... ... ... ... ... ... ... ...

¬ϕ UNSAT

¬ϕ UNSAT

¬ϕ UNSAT

¬ϕ UNSAT¬ϕ UNSAT

¬ϕ UNSAT

¬ϕ SAT

We know ϕ can be falsified with the execution p1, p2, q3, p4. It is the trace of error
and we output it!

4 / 12



Depth-first search

Given a formula ϕ, we want to know if it is valid (it is the specification) up to depth
k in all executions. We perform a depth-first search.

p1

p2 q2

p3 q3 p3 q3

p4 q4 p4 q4 p4 q4 p4 q4

x = x + y x ≥ y

x = x + y x ≥ y x ≤ y y = x + y

... ... ... ... ... ... ... ...

¬ϕ UNSAT

¬ϕ UNSAT

¬ϕ UNSAT

¬ϕ UNSAT¬ϕ UNSAT

¬ϕ UNSAT

¬ϕ SAT

We know ϕ can be falsified with the execution p1, p2, q3, p4. It is the trace of error
and we output it!

4 / 12



Depth-first search

Given a formula ϕ, we want to know if it is valid (it is the specification) up to depth
k in all executions. We perform a depth-first search.

p1

p2 q2

p3 q3 p3 q3

p4 q4 p4 q4 p4 q4 p4 q4

x = x + y x ≥ y

x = x + y x ≥ y x ≤ y y = x + y

... ... ... ... ... ... ... ...

¬ϕ UNSAT

¬ϕ UNSAT

¬ϕ UNSAT

¬ϕ UNSAT

¬ϕ UNSAT

¬ϕ UNSAT

¬ϕ SAT

We know ϕ can be falsified with the execution p1, p2, q3, p4. It is the trace of error
and we output it!

4 / 12



Depth-first search

Given a formula ϕ, we want to know if it is valid (it is the specification) up to depth
k in all executions. We perform a depth-first search.

p1

p2 q2

p3 q3 p3 q3

p4 q4 p4 q4 p4 q4 p4 q4

x = x + y x ≥ y

x = x + y x ≥ y x ≤ y y = x + y

... ... ... ... ... ... ... ...

¬ϕ UNSAT

¬ϕ UNSAT

¬ϕ UNSAT

¬ϕ UNSAT

¬ϕ UNSAT

¬ϕ UNSAT

¬ϕ SAT

We know ϕ can be falsified with the execution p1, p2, q3, p4. It is the trace of error
and we output it!

4 / 12



Depth-first search

Given a formula ϕ, we want to know if it is valid (it is the specification) up to depth
k in all executions. We perform a depth-first search.

p1

p2 q2

p3 q3 p3 q3

p4 q4 p4 q4 p4 q4 p4 q4

x = x + y x ≥ y

x = x + y x ≥ y x ≤ y y = x + y

... ... ... ... ... ... ... ...

¬ϕ UNSAT

¬ϕ UNSAT

¬ϕ UNSAT

¬ϕ UNSAT¬ϕ UNSAT

¬ϕ UNSAT

¬ϕ SAT

We know ϕ can be falsified with the execution p1, p2, q3, p4. It is the trace of error
and we output it!

4 / 12



Depth-first search

Given a formula ϕ, we want to know if it is valid (it is the specification) up to depth
k in all executions. We perform a depth-first search.

p1

p2 q2

p3 q3 p3 q3

p4 q4 p4 q4 p4 q4 p4 q4

x = x + y x ≥ y

x = x + y x ≥ y x ≤ y y = x + y

... ... ... ... ... ... ... ...

¬ϕ UNSAT

¬ϕ UNSAT

¬ϕ UNSAT

¬ϕ UNSAT¬ϕ UNSAT

¬ϕ UNSAT

¬ϕ SAT

We know ϕ can be falsified with the execution p1, p2, q3, p4. It is the trace of error
and we output it!

4 / 12



Breadth-first search

Another solution to do bounded model-checking is to perform a breadth-first search.

p1

p2 q2

p3 q3 p3 q3

p4 q4 p4 q4 p4 q4 p4 q4

x = x + y x ≥ y

x = x + y x ≥ y x ≤ y y = x + y

... ... ... ... ... ... ... ...

¬ϕ UNSAT

¬ϕ UNSAT ¬ϕ UNSAT

¬ϕ UNSAT

¬ϕ UNSAT¬ϕ SAT

Here, p1, q2, p3 is the trace of error and we output it!

5 / 12



Breadth-first search

Another solution to do bounded model-checking is to perform a breadth-first search.

p1

p2 q2

p3 q3 p3 q3

p4 q4 p4 q4 p4 q4 p4 q4

x = x + y x ≥ y

x = x + y x ≥ y x ≤ y y = x + y

... ... ... ... ... ... ... ...

¬ϕ UNSAT

¬ϕ UNSAT

¬ϕ UNSAT

¬ϕ UNSAT

¬ϕ UNSAT¬ϕ SAT

Here, p1, q2, p3 is the trace of error and we output it!

5 / 12



Breadth-first search

Another solution to do bounded model-checking is to perform a breadth-first search.

p1

p2 q2

p3 q3 p3 q3

p4 q4 p4 q4 p4 q4 p4 q4

x = x + y x ≥ y

x = x + y x ≥ y x ≤ y y = x + y

... ... ... ... ... ... ... ...

¬ϕ UNSAT

¬ϕ UNSAT

¬ϕ UNSAT

¬ϕ UNSAT

¬ϕ UNSAT¬ϕ SAT

Here, p1, q2, p3 is the trace of error and we output it!

5 / 12



Breadth-first search

Another solution to do bounded model-checking is to perform a breadth-first search.

p1

p2 q2

p3 q3 p3 q3

p4 q4 p4 q4 p4 q4 p4 q4

x = x + y x ≥ y

x = x + y x ≥ y x ≤ y y = x + y

... ... ... ... ... ... ... ...

¬ϕ UNSAT

¬ϕ UNSAT ¬ϕ UNSAT

¬ϕ UNSAT

¬ϕ UNSAT¬ϕ SAT

Here, p1, q2, p3 is the trace of error and we output it!

5 / 12



Breadth-first search

Another solution to do bounded model-checking is to perform a breadth-first search.

p1

p2 q2

p3 q3 p3 q3

p4 q4 p4 q4 p4 q4 p4 q4

x = x + y x ≥ y

x = x + y x ≥ y x ≤ y y = x + y

... ... ... ... ... ... ... ...

¬ϕ UNSAT

¬ϕ UNSAT ¬ϕ UNSAT

¬ϕ UNSAT

¬ϕ UNSAT

¬ϕ SAT

Here, p1, q2, p3 is the trace of error and we output it!

5 / 12



Breadth-first search

Another solution to do bounded model-checking is to perform a breadth-first search.

p1

p2 q2

p3 q3 p3 q3

p4 q4 p4 q4 p4 q4 p4 q4

x = x + y x ≥ y

x = x + y x ≥ y x ≤ y y = x + y

... ... ... ... ... ... ... ...

¬ϕ UNSAT

¬ϕ UNSAT ¬ϕ UNSAT

¬ϕ UNSAT

¬ϕ UNSAT

¬ϕ SAT

Here, p1, q2, p3 is the trace of error and we output it!

5 / 12



Forward versus backward

Forward: unfold the transition system in forward direction (as the execution is
actually done).
Backward: unfold the transition system in reverse direction.
As logical formula are not concerned with the direction of execution, the two version
are equivalent. There are cases in which one is better than the other, and some
where it doesn’t matter.

6 / 12



Forward versus bacward: an example

1 2

3 4 5 6 7

8910

f

L := 0

n == o
n ̸= o

L ̸= 0

L == 0 L := 1 o := n

skip
skip

L ̸= 1

L == 1L := 0n := n + 1

For forward bounded model-checking, we get a non-exhaustive search (fail not
reachable).
For backward model-checking, we get an exhaustive search (depth 5).

7 / 12



Forward version

1

2

3 4

f5

6

7

7

2

43

8

9 f

10

2

L1 = 0

n0 = o0 n0 ̸= o0

L1 ̸= 0L1 = 0

L4 = 1

o5 = n0

⊤

n0 ̸= o5n0 = o5

⊤

L4 ̸= 1L4 = 1

L8 = 0

n9 = n0 + 1

8 / 12



Bacward version

f

4 8

2 7

6

5

71 10

6 9

L0 ̸= 0 L0 ̸= 1

n0 ̸= o0 ⊤

o0 = n0

L0 = 1

⊤

o0 = n0

L0 = 0 n0 = n2 + 1

L0 = 0

9 / 12



Completeness threshold

Knowing when we know we have a reliable answer:
As hard as MC to compute exactly.
Possible to over-approximate it by seeing the system as a graph.

10 / 12



Correctness

Détecter les boucles ? Faut que je discute de ça. . .

11 / 12



Example

Wolf, cabbage, goat, boat.

12 / 12


