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Propositional Logic: Booleans

Booleans

{True, False} OR {⊤, ⊥} OR {0, 1}

And

∧ ⊥ ⊥
⊥ ⊥ ⊥
⊤ ⊥ ⊤

Or

∨ ⊥ ⊥
⊥ ⊥ ⊤
⊤ ⊤ ⊤

Not

¬
⊥ ⊤
⊤ ⊥
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Propositional Logic: Formulæ

Formula Grammar

ϕ ::= x | ¬ϕ | ϕ ∨ ϕ′ | ϕ ∧ ϕ′

Examples:
p ∨ ¬p
¬(p ∧ q)
(p ∧ q) ∨ (¬p ∧ ¬q)
(¬p ∨ q) ∧ (¬q ∨ r) ∧ (¬r ∨ p)
(¬p ∨ (q ∧ ¬r)) ∧ (r ∨ ¬p)
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Propositional Logic: Formulæ with added (syntactic) sugar

Formula Grammar

ϕ ::= x | ¬ϕ | ϕ ∨ ϕ′ | ϕ ∧ ϕ′ | ϕ ⇒ ϕ′ | ϕ ⇔ ϕ′

Examples:
p ∨ ¬p
¬(p ∧ q)
(p ∧ q) ∨ (¬p ∧ ¬q) or p ⇔ q
(¬p ∨ q) ∧ (¬q ∨ r) ∧ (¬r ∨ p) or (p ⇒ q) ∧ (q ⇒ r) ∧ (r ⇒ p)
(¬p ∨ (q ∧ ¬r)) ∧ (r ∨ ¬p) or p ⇒ (q ∧ ¬r) ∧ ¬r ⇒ ¬p
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Propositional Logic: Satisfiability and validity

Satisfiability: ν |= ϕ

A formula ϕ is satisfiable if a assignment of variables ν makes it true.

Validity

A formula ϕ is valid if all assignments of variables makes it true.

4 / 17



Propositional Logic: Satisfiability and validity

Satisfiability: ν |= ϕ

A formula ϕ is satisfiable if a assignment of variables ν makes it true.

Validity

A formula ϕ is valid if all assignments of variables makes it true.

ϕ is satisfiable if and only if ¬ϕ is not valid.

4 / 17



Propositional Logic: Satisfiability and validity

Satisfiability: ν |= ϕ

A formula ϕ is satisfiable if a assignment of variables ν makes it true.

Validity

A formula ϕ is valid if all assignments of variables makes it true.

Examples:
p ∨ ¬p

Valid

¬(p ∧ q)

Satisfiable: p = ⊥, q = ⊥.

(p ∧ q) ∨ (¬p ∧ ¬q)

Satisfiable: p = ⊤, q = ⊤.

(¬p ∨ q) ∧ (¬q ∨ r) ∧ (¬r ∨ p)

Satisfiable: p = q = r = ⊤.

(¬p ∨ (q ∧ ¬r)) ∧ (r ∨ ¬p)

Unsatisfiable.

4 / 17



Propositional Logic: Satisfiability and validity

Satisfiability: ν |= ϕ

A formula ϕ is satisfiable if a assignment of variables ν makes it true.

Validity

A formula ϕ is valid if all assignments of variables makes it true.

Examples:
p ∨ ¬p Valid
¬(p ∧ q)

Satisfiable: p = ⊥, q = ⊥.

(p ∧ q) ∨ (¬p ∧ ¬q)

Satisfiable: p = ⊤, q = ⊤.

(¬p ∨ q) ∧ (¬q ∨ r) ∧ (¬r ∨ p)

Satisfiable: p = q = r = ⊤.

(¬p ∨ (q ∧ ¬r)) ∧ (r ∨ ¬p)

Unsatisfiable.

4 / 17



Propositional Logic: Satisfiability and validity

Satisfiability: ν |= ϕ

A formula ϕ is satisfiable if a assignment of variables ν makes it true.

Validity

A formula ϕ is valid if all assignments of variables makes it true.

Examples:
p ∨ ¬p Valid
¬(p ∧ q) Satisfiable: p = ⊥, q = ⊥.
(p ∧ q) ∨ (¬p ∧ ¬q)

Satisfiable: p = ⊤, q = ⊤.

(¬p ∨ q) ∧ (¬q ∨ r) ∧ (¬r ∨ p)

Satisfiable: p = q = r = ⊤.

(¬p ∨ (q ∧ ¬r)) ∧ (r ∨ ¬p)

Unsatisfiable.

4 / 17



Propositional Logic: Satisfiability and validity

Satisfiability: ν |= ϕ

A formula ϕ is satisfiable if a assignment of variables ν makes it true.

Validity

A formula ϕ is valid if all assignments of variables makes it true.

Examples:
p ∨ ¬p Valid
¬(p ∧ q) Satisfiable: p = ⊥, q = ⊥.
(p ∧ q) ∨ (¬p ∧ ¬q) Satisfiable: p = ⊤, q = ⊤.
(¬p ∨ q) ∧ (¬q ∨ r) ∧ (¬r ∨ p)

Satisfiable: p = q = r = ⊤.

(¬p ∨ (q ∧ ¬r)) ∧ (r ∨ ¬p)

Unsatisfiable.

4 / 17



Propositional Logic: Satisfiability and validity

Satisfiability: ν |= ϕ

A formula ϕ is satisfiable if a assignment of variables ν makes it true.

Validity

A formula ϕ is valid if all assignments of variables makes it true.

Examples:
p ∨ ¬p Valid
¬(p ∧ q) Satisfiable: p = ⊥, q = ⊥.
(p ∧ q) ∨ (¬p ∧ ¬q) Satisfiable: p = ⊤, q = ⊤.
(¬p ∨ q) ∧ (¬q ∨ r) ∧ (¬r ∨ p) Satisfiable: p = q = r = ⊤.
(¬p ∨ (q ∧ ¬r)) ∧ (r ∨ ¬p)

Unsatisfiable.

4 / 17



Propositional Logic: Satisfiability and validity

Satisfiability: ν |= ϕ

A formula ϕ is satisfiable if a assignment of variables ν makes it true.

Validity

A formula ϕ is valid if all assignments of variables makes it true.

Examples:
p ∨ ¬p Valid
¬(p ∧ q) Satisfiable: p = ⊥, q = ⊥.
(p ∧ q) ∨ (¬p ∧ ¬q) Satisfiable: p = ⊤, q = ⊤.
(¬p ∨ q) ∧ (¬q ∨ r) ∧ (¬r ∨ p) Satisfiable: p = q = r = ⊤.
(¬p ∨ (q ∧ ¬r)) ∧ (r ∨ ¬p) Unsatisfiable.

4 / 17



SAT

SAT is NP-complete

Problem SAT:
Input: A propositional formula ϕ.
Output: Is ϕ satisfiable?
SAT is NP-complete.

It means that verifying if a given valuation ν satisfies ϕ is polynomial, but finding
such a ν given ϕ is not (a priori).

Hopefully, there are good heuristics which allow to solve efficiently satisfiability
problems up to a not too ridiculous size.
Examples: Glucose (developed in LaBRI), MiniSAT, Lingeling, Sat4j, etc...

Therefore, modelling problems and programs in propositional logic, and check
the satisfiability of the obtained formula with a SAT solver to verify a program!
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How does it work?

Formulæ must be in CNF (not obvious) → Exercise.
Explain Unit propagation and split rules. Say it is Davis, Putnam, Logemann,
Loveland algorithm.
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Modelling with SAT

Can I color a graph with two colors such that no two adjacent nodes are the same
color?

x

y z

One variable per node: x stands for "x in red", ¬x
for "x in green".

Each node has one color: ¬(x ∧ ¬x). True

Each edge has different colors for its ends:
¬(x ∧ y) ∧ ¬(¬x ∧ ¬y).

Total formula: ¬(x ∧ y) ∧ ¬(¬x ∧ ¬y) ∧ ¬(x ∧
z) ∧ ¬(¬x ∧ ¬z) ∧ ¬(z ∧ y) ∧ ¬(¬z ∧ ¬y).
Unsatisfiable!

7 / 17



Modelling with SAT

Can I color a graph with two colors such that no two adjacent nodes are the same
color?

x

y z

One variable per node: x stands for "x in red", ¬x
for "x in green".

Each node has one color: ¬(x ∧ ¬x).

True

Each edge has different colors for its ends:
¬(x ∧ y) ∧ ¬(¬x ∧ ¬y).

Total formula: ¬(x ∧ y) ∧ ¬(¬x ∧ ¬y) ∧ ¬(x ∧
z) ∧ ¬(¬x ∧ ¬z) ∧ ¬(z ∧ y) ∧ ¬(¬z ∧ ¬y).
Unsatisfiable!

7 / 17



Modelling with SAT

Can I color a graph with two colors such that no two adjacent nodes are the same
color?

x

y z

One variable per node: x stands for "x in red", ¬x
for "x in green".

Each node has one color: ¬(x ∧ ¬x). True

Each edge has different colors for its ends:
¬(x ∧ y) ∧ ¬(¬x ∧ ¬y).

Total formula: ¬(x ∧ y) ∧ ¬(¬x ∧ ¬y) ∧ ¬(x ∧
z) ∧ ¬(¬x ∧ ¬z) ∧ ¬(z ∧ y) ∧ ¬(¬z ∧ ¬y).
Unsatisfiable!

7 / 17



Modelling with SAT

Can I color a graph with two colors such that no two adjacent nodes are the same
color?

x

y z

One variable per node: x stands for "x in red", ¬x
for "x in green".

Each node has one color: ¬(x ∧ ¬x). True

Each edge has different colors for its ends:
¬(x ∧ y) ∧ ¬(¬x ∧ ¬y).

Total formula: ¬(x ∧ y) ∧ ¬(¬x ∧ ¬y) ∧ ¬(x ∧
z) ∧ ¬(¬x ∧ ¬z) ∧ ¬(z ∧ y) ∧ ¬(¬z ∧ ¬y).
Unsatisfiable!

7 / 17



Modelling with SAT

Can I color a graph with two colors such that no two adjacent nodes are the same
color?

x

y z

One variable per node: x stands for "x in red", ¬x
for "x in green".

Each node has one color: ¬(x ∧ ¬x). True

Each edge has different colors for its ends:
¬(x ∧ y) ∧ ¬(¬x ∧ ¬y).

Total formula: ¬(x ∧ y) ∧ ¬(¬x ∧ ¬y) ∧ ¬(x ∧
z) ∧ ¬(¬x ∧ ¬z) ∧ ¬(z ∧ y) ∧ ¬(¬z ∧ ¬y).

Unsatisfiable!

7 / 17



Modelling with SAT

Can I color a graph with two colors such that no two adjacent nodes are the same
color?

x

y z

One variable per node: x stands for "x in red", ¬x
for "x in green".

Each node has one color: ¬(x ∧ ¬x). True

Each edge has different colors for its ends:
¬(x ∧ y) ∧ ¬(¬x ∧ ¬y).

Total formula: ¬(x ∧ y) ∧ ¬(¬x ∧ ¬y) ∧ ¬(x ∧
z) ∧ ¬(¬x ∧ ¬z) ∧ ¬(z ∧ y) ∧ ¬(¬z ∧ ¬y).
Unsatisfiable!

7 / 17



Modelling with SAT (bis)

Can I color a graph with three colors such that no two adjacent nodes are the same
color?

x

y z

x

y z

One variable per node: x stands for "x in red", x
for "x in green" and x stands for x in blue".

Each node has exactly one color:
(x ∨ x ∨ x) ∧ (¬x ∨ ¬x) ∧ (¬x ∨ ¬x) ∧ (¬x ∨ ¬x).

Each edge has different colors for its ends:
¬(x ∧ y) ∧ ¬(x ∧ y) ∧ ¬(x ∧ y).

Total formula: a bit big, but straightforward
Satisfiable!
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Exercises

Here put some modelling exercises.
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Quantifier-free First Order Logic over a universe

We consider a set U called universe.

Predicate

A n-ary predicate over U is an application from Un to {⊤, ⊥}.

Quantifier-free FO(U)

ϕ ::= P(e1, · · · , e|P|) | ¬ϕ | ϕ ∨ ϕ′ | ϕ ∧ ϕ′

where e1, · · · , e|P| are expressions over U (depends on U).

Examples:
Graphs: (Red(x) ∧ Edge(x , y) ∧ Reachable(y , z)) ⇒ (Blue(z) ∧ ¬Edge(z , x))
Arithmetic: = (+(3, ×(x , 5)), ×(y , /(z , 20)) ⇒≤ (+(z , y), x)
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First Order Logic over a universe

We consider a set U called universe.

Predicate

A n-ary predicate over U is an application from Un to {⊤, ⊥}.

FO(U)

ϕ ::= P(e1, · · · , e|P|) | ¬ϕ | ϕ ∨ ϕ′ | ϕ ∧ ϕ′ | ∃x , ϕ | ∀x , ϕ

where e1, · · · , e|P| are expressions over U (depends on U).

Examples:
Graphs:
∃x , y , ∀z , (Red(x) ∧ Edge(x , y) ∧ Reachable(y , z)) ⇒ (Blue(z) ∧ ¬Edge(z , x))
Arithmetic: ∀x , ∃y , z , 3 + 5 × x = y × (z/20) ∨ (z + y) ⇒ x
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SAT Modulo Theory (SMT)

Problem SMT over a universe U and a Theory T

Input: A formula ϕ in FO(U , T ).
Output: Is ϕ satisfiable?

Such a formula may even be over several universes (provided variable names do not
conflict).
Provided there are algorithms to decide the theory over the universe, a SMT
problem is decidable may be solved by combining a SAT solver and such algorithms.
For full-FO, however, in general, the SMT problem is undecidable.

There are today efficient SMT solvers: Z3 (Microsoft), Alt-Ergo (Ocamlpro),
Barcelogic, etc.

Modelling programs in SMT is easier than with SAT, and allows to range over
infinite domains!

In this course, we will use Z3.
Note: Z3 supports quantifiers, but doesn’t give a decision procedure for FO
satisfiability, due to undecidability of that problem!.
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How does it work?

SMT-solvers combines the efficiency of a SAT-solver and theory-specific decision
procedure. For example, the following formula combine propositional logic with
unquantified linear real arithmetic (QF_LRA):

a ∧ ((x + y ≤ 0) ∨ ¬a) ∧ ((x = 1) ∨ b), a, b ∈ B, x , y ∈ R (1)

c d c , d ∈ B

Solving procedure

Identify the boolean parts of the formula;
Identify the arithmetic parts of the formula;
Substitute the QF_LRA clauses by boolean clauses;
Check satisfiability of the formula with a SAT-solver
(enumerate all possible boolean models);
If some boolean models are found satisfiable,
check if the model is reachable in the QF_LRA logic (e.g. using Simplex);
Return the result.
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How does it work?

As any modern boolean SAT solvers most tools are based on the Davis-Putnam
and Davis-Logemann-Loveland (DPLL) procedures:

Input formula is in Conjunctive Normal Form (CNF);
Solver combines search with backtracking and deduction.

However, it is not enough to connect an efficient DPLL solver and Simplex to get an
efficient DPLL(LRA) solver, we need:

Theory Propagation,
Do not wait for a complete Boolean model (parallelize),
Preprocessing,
Conversion in CNF,
Theory layering,
etc.
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Core of SMT-solvers: SMT-Lib

SMT-LIB

Started in 2003, SMT-LIB is an international initiative aimed at facilitating research
and development in Satisfiability Modulo Theories. It has been created with the
expectation that the availability of common standards and a library of benchmarks
would greatly facilitate the evaluation and the comparison of SMT systems, and
advance the state of the art in the field in the same way as, for instance, the TPTP
library has done for theorem proving, or the SATLIB library has done initially for
SAT.

SMT-LIB Goals

Provide a standard descriptions of background theories used in SMT systems;

Develop and promote common input and output languages for SMT solvers;

Establish and make available to the research community a large library of bench-
marks for SMT solvers.
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SMT-LIB: Supported Theories

Theory versus Logic

A theory defines a vocabulary of sorts and functions, and it associates a
sort with relevant literals.
A logic is defined to gather one or more theories, together with some
restrictions on the kind of expressions that may be used within the logic.

Core: Core theory, defining the basic Boolean operators.
Ints: Integer numbers.
Reals: Real numbers.
Reals_Ints: Real and integer numbers.
Fixed_Size_BitVectors: Arbitrary fixed-size bit vectors.
ArraysEx: Functional arrays with extensionality.
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SMT-LIB: Supported Logics (1/2)

Boolean Logics

QF_UF: Unquantified uninterpreted formulas.

Logic with Arithmetic

QF_NIA: Quantifier-free integer arithmetic.
QF_LIA: Unquantified linear integer arithmetic. Adds linear arithmetic to the QF_UF logic. In

essence, Boolean combinations of inequations between linear polynomials over integer variables.
QF_LRA: Unquantified linear real arithmetic. Adds linear arithmetic over the reals to QF_UF logic.
LRA: Linear integer arithmetic. Simply extends QF_LRA by allowing quantifiers.

Logics for Difference Arithmetic

QF_IDL: Difference Logic over the integers without quantifier. In essence, Boolean combinations
of inequations of the form x − y < b where x and y are integer variables and b is an integer constant.
QF_RDL: Difference Logic over the reals without quantifier. In essence, Boolean combinations of

inequations of the form x − y < b where x and y are real variables and b is a rational constant.
QF_UFIDL: Difference Logic over the integers (in essence) but with uninterpreted functions.
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SMT-LIB: Supported Logics (2/2)

Logics with Bit-Vectors and Arrays

QF_BV: Closed quantifier-free formulas over the theory of fixed-size bitvectors.
QF_AX: Closed quantifier-free formulas over the theory of arrays with extensionality.
QF_ABV: Closed quantifier-free formulas over the theory of bitvectors and bitvector arrays.
QF_UFBV: Unquantified formulas over bitvectors with uninterpreted sort function and symbols.
QF_AUFBV: Closed quantifier-free formulas over the theory of bitvectors and bitvector arrays

extended with free sort and function symbols.

Composite Logics with Arithmetic

QF_UFLIA: Unquantified linear integer arithmetic with uninterpreted functions.
QF_AUFLIA: Extends QF_LIA linear arithmetic logic, with addition of arrays and arbitrary

uninterpreted functions.
QF_UFNRA: Unquantified non-linear real arithmetic with uninterpreted functions.
AUFLIA: Extends QF_AUFLIA by allowing quantifiers.
AUFLIRA: Allows quantifiers and includes Int and Real sorts, but is limited to linear arithmetic.
AUFNIRA: Allows quantifiers and general Int+Real arithmetic, arrays, and uninterpreted functions.
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